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The water clarity of many inland water bodies is under threat due to intensifying land use pressures in conjunc-
tionwith changes inwater levels that result from increasing demand and climate variability. The recent launch of
Landsat 8 coupledwith Geoscience Australia's recent reprocessing of the Landsat ThematicMapper (TM) and En-
hanced Thematic Mapper (ETM+) archives over the whole of Australia to a consistent surface reflectance prod-
uct enables sub continental scale spatio-temporal analysis of freshwater optical water quality in support of
monitoring and decision making for water management agencies. In this research, we present an objective as-
sessment of the potential of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 Operational Land Imager (OLI) data
for monitoring inland water quality dynamics over a number of lakes and reservoirs with a range of optical
water types in New South Wales and Queensland, Australia. We used bio-optical modelling to develop sensor-
specific total suspended matter (TSM) retrieval algorithms that account for the difference in relative spectral re-
sponse between Landsat 7 ETM+and Landsat 8 OLI.Wewere able to compare the suitability of the different sen-
sors for optical water quality measurements using water bodies that fell within Landsat path overlaps where
Landsat images of surface reflectance were acquired within 24 h between Landsat 5 TM and Landsat 7 ETM+
or Landsat 7 ETM+ and Landsat 8 OLI. These water bodies represent a range of hydrological and limnological
conditions, and enabled us to assess: 1) the comparability of TSM measurements retrieved from each sensor,
and 2) the surface reflectance to image noise characteristics of Landsat 7 ETM+ and Landsat 8 OLI. Comparisons
of lake surface reflectance and noise equivalent reflectance difference show that the improved radiometric reso-
lution and increased quantization of Landsat 8 OLI relative to Landsat 7 ETM+ significantly reduce image noise
and spectral heterogeneity, indicating that Landsat 8 OLI data are expected to providemore precise water quality
retrievals relative to Landsat 7 ETM+.We found that: 1) the TSM retrievals from the different sensors are highly
comparable; 2) Landsat 5 TM overestimated TSM relative to Landsat 7 ETM+ by 6.4%; and 3) Landsat 7 ETM+
overestimated TSM relative to Landsat 8 OLI by only 1.4%. Retrieved TSM values were highly correlated with in-
dependent in situdata acquiredwithin 24 h of satellite overpass (r=0.99)with amean average error of 14mg/L.
The results demonstrate that time series analysis of TSM retrievals can be conducted across a wide range of lakes
at the sub-continental scale to characterise the multi-decadal TSM dynamics.

© 2016 Published by Elsevier Inc.
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1. Introduction

Land use intensification and watershed disturbance often lead to an
increase in both sediment and nutrient fluxes to rivers and other inland
water bodies, and a large portion of these increased fluxes are retained
in inland waters, including both lakes (Olmanson, Bauer, & Brezonik,
2008) and constructed reservoirs (Harrison, Bouwman, Mayorga, &
er).
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Seitzinger, 2010; Harrison et al., 2005). Sediments and nutrients of an-
thropogenic origin are among the most important pollutant stressors
threateningwater security for human consumption and freshwater bio-
diversity (Davies-Colley & Smith, 2001; Foley et al., 2005; Vorosmarty
et al., 2010) and affect the aesthetic value and ecological and biogeo-
chemical function of a water body. Total suspended matter (TSM), the
mass or concentration of inorganic and organic matter held in suspen-
sion, is a well recognised indicator of water quality (Bilotta & Brazier,
2008). Increased TSM in aquatic ecosystems reduce water clarity and
the depth of the euphotic zone (Bilotta & Brazier, 2008; Davies-Colley
ity and increased precision for measuringmulti-decadal time series of
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& Smith, 2001), impacting primary producers including phytoplankton
and aquatic macrophytes, and eventually leading to an impoverished
ecological status (Dennison et al., 1993; Jeppesen et al., 2009).

The Landsat series of sensors, and specifically the Landsat 5 TM,
Landsat 7 ETM+ and Landsat 8 OLI sensors have acquired data system-
atically according to a long term acquisition plan (Arvidson, Gasch, &
Goward, 2001). This in combination with their 30 m spatial resolution
means that the Landsat series of satellites provide a unique, freely avail-
able dataset to identify both historical baselines and current changes in
TSM in relatively small water bodies across large geographic areas. Pre-
vious studies have mapped TSM using Landsat (Carpenter & Carpenter,
1983; Dekker, Vos, & Peters, 2002; Heege, Kiselev, Wettle, & Hung,
2014; Kong et al., 2015; Lulla, 1983; Mertes, Smith, & Adams, 1993).
These studies, however, typically focus on a specific location, a single
Landsat sensor, or a small number of scenes.

One of the greatest challenges to developing a systematic time series
of TSM across large geographic regions is ensuring that the TSM esti-
mates are not varying due to changes in sensors Barnes et al. (2014).
This includes changes in spectral response functions (Fleming, 2006;
Flood, 2014) as well as radiometric quality, which impacts the accuracy
of the retrieval as well as the effective spatial resolution of the data (Hu
et al., 2012;Hestir, Brando, Bresciani, et al., in press). Although Landsat 8
OLI has been demonstrated to have sufficient radiometric capability to
measure TSM in turbid coastal waters (e.g., Vanhellemont & Ruddick,
2014), the comparability of TSM retrievals across different Landsat sen-
sors needs to be evaluated. For example, in a simulation study for turbid
coastal waters, Pahlevan and Schott (2013) showed higher spatial vari-
ability and lower accuracy in TSM retrievals from Landsat 7 ETM+com-
pared to Landsat 8 OLI due to the lower quantization of the sensor (8
bits for ETM+ and 12 bits for OLI). However, they also conclude that
overall the TSM products derived from the two simulated sensors
were generally comparable and should be sufficient for long-termmon-
itoring of coastal waters. Vanhellemont and Ruddick (2014) retrieved
total suspended matter (TSM) from actual Landsat 8 observations of a
turbid coastal environment. For Landsat 7 ETM+, however, they
found it necessary to bin data to 11 × 11 pixels to overcome the limited
quantization. This reduced the effective spatial resolution of Landsat 7
ETM+ to 330 m, which would significantly limit the utility of Landsat
for TSM time series analyses in smaller inland waterbodies.

To develop sufficiently reliable TSM time series for inlandwater bod-
ies, a consistent, systematic and standardized methodology must be
successfully implemented across the Landsat archive, which is com-
prised of multiple scenes and sensors and well characterised but vari-
able radiometric quality (Dekker & Hestir, 2012; Malthus, Hestir,
Dekker, & Brando, 2012; Markham & Helder, 2012). The development
of the Australian Geoscience Data Cube (Purss et al., 2015) provides ac-
cess to Landsat observations of the entire Australian continent that have
all been processed using the same atmospheric correction, view angle
and BRDF correction technique (Li et al., 2010) and pixel quality flagging
methods (Irish, Barker, Goward, & Arvidson, 2006; Sixsmith, Oliver, &
Lymburner, 2013; Zhu &Woodcock, 2012). This makes it possible to re-
trieve amulti-sensor time series of surface reflectance observations that
have had the cloud and cloud shadows removed. The availability of this
consistently processed surface reflectance dataset across Australia al-
lows for the first time the development of a systematic, standardized
methodology to estimate lake and reservoir TSM. This can now be
done across large geographic areas and enables the comparison of in-
land water TSM retrievals across different sensors to support long-
term monitoring of water bodies to identify both short term changes
and long term trends in water quality.

Systematic TSM retrieval algorithm for time series of inlandwater
bodies requires being able to apply an algorithm to Landsat data at
full (30 m) resolution while accounting for the differing spectral re-
sponse functions of the sensors (Flood, 2014). It also requires the au-
tomated removal of sun glint and small white cap affected
observations (Devred et al., 2013; Kutser, 2012). Furthermore,
Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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retrieving TSM from many different waterbodies over a large geo-
graphic area will include lakes that span a range of optical conditions
due to a variety of hydro-limnological settings. In many parts of the
world, including Australia, in situ TSM optical water quality charac-
terisation data are only available for a limited number of lakes. This
necessitates that the systematic TSM retrieval algorithm cannot be
dependent on the availability of TSM measurements necessary for
an empirical approach (e.g. Olmanson et al., 2008) or on the inherent
optical properties for each water body necessary for a full physics-
based approach (e.g. Heege et al., 2014).

The objectives of this study are to: 1) develop amethod for generat-
ing time series of TSM measurements at the multi-decadal scale using
multiple Landsat sensors; 2) apply this technique to quantify the tem-
poral dynamics of TSM of lakes distributed through a region with high
variability in rainfall and climatic zones ranging frommid-latitude tem-
perate, alpine, and semi-arid to sub-tropical; 3) evaluate the perfor-
mance of the different Landsat sensors for inland water TSM retrievals
across large regions to support long-term monitoring activities.

2. Method

2.1. Site description

Australia provides an excellent case study for the development of a
systematic TSM retrieval approach. The continent is under high water
stress due to low annual precipitation, the highest rates of surface
water loss due to evapotranspiration and increasing anthropogenic
water demand. It is ranked among the worst of developed countries
for the way in which water resource management affects ecosystems
(Emerson et al., 2012). Surface water quality in Australia is declining
(Emerson et al., 2012), recurring harmful and nuisance algal blooms
are widespread (Davis & Koop, 2006), nutrient fluxes and dynamics
are poorly resolved (Davis & Koop, 2006), and sediment erosion and
transport to freshwater ecosystems and the coastal zone remain as crit-
ical concerns (McCulloch et al., 2003; Prosser et al., 2001). Under the
Water Act 2007 and Water Regulations 2008, the Australia Bureau of
Meteorology is responsible for reporting on Australian inland water
quality. However, water quality information in Australia is sparse, diffi-
cult to obtain, and variable in content and accuracy due to the fact that it
has been collected by different agencies using different sampling tech-
niques and is constrained by different licensing conditions (Dekker &
Hestir, 2012). In Australia, the states of New South Wales and Queens-
land have a large number of lakes and reservoirs which are measurable
with Landsat pixel resolutions (Dekker & Hestir, 2012), and have some
TSM measurements available. The states also span a large gradient of
hydro-climatic conditions. Thus, we selected lakes and reservoirs from
within the state of New South Wales and Queensland for application
of systematic TSM retrieval (Fig. 1).

2.2. Water body identification

Although the spatial resolution of Landsat makes it ideal for measur-
ing a variety of inland water bodies (Hestir, Brando, Campbell, et al.,
2015), smaller water bodies are subjected to adjacency effects
(Giardino, Brando, Dekker, Strömbeck, & Candiani, 2007). To ensure
that only pure water reflectance was analysed in this study, only
water bodies that were larger than 3 × 3 Landsat pixels were used
(Table 1, Fig. 1). Subsequent to this screening, the location for the time
series of surface reflectance observations for each water body was
selected using the following criteria:

• Located in the deepest part of the water body (to ensure optical depth
and permanent inundation in the case of water bodies with highly
variable inundation regimes)

• Located as far from the shore as possible while still meeting the crite-
rion above (to minimise the impact of adjacency effects)
ity and increased precision for measuringmulti-decadal time series of
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Fig. 1. Site locations for inland waters in New South Wales, Australia, waterbodies marked with X are described in Table 1. Inherent optical properties from waterbodies marked with a
circle were used to establish the regional inherent optical property (IOP) set for the bio-optical modelling.
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2.3. Landsat TSM retrieval

Retrieving the concentration of total suspendedmatter from Landsat
data requires knowledge of its effects on the spectral signal measured
by the sensor. Dekker et al. (2002) identified the green and red Landsat
bands asmost suitable for estimating variations in total suspendedmat-
ter (TSM) (Eq. (1)).

TSMindex ¼ greenþ redð Þ=2 ð1Þ

The paucity of concurrent in situ optical water quality observations
precluded an empirical approach to tuning the TSM index for regional
TSM retrievals. Thus we adapted the Dekker et al. (2002) TSM index fol-
lowing a semi-analytical approach.
Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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Surface reflectance datawere simulated in a forward radiative trans-
fer model Ecolight 5.0 (Mobley, Sundman, Bissett, & Cahill, 2009). Sim-
ulations were based on measurements of specific inherent optical
properties (SIOPs) and water quality concentrations collected during
bio-optical sampling campaigns conducted byCSIRO in seven construct-
ed reservoirs during the dry andwet season from2012 to 2013. The res-
ervoirs span a latitudinal gradient of nearly 16°, from temperate to
tropical climate zones. The methods for sampling and sample analyses
are described in Clementson, Parslow, Turnbull, McKenzie, and
Rathbone (2001) and Hestir, Brando, Campbell, et al. (2015).

A four-component optical model was parameterized in Ecolight 5.0.
Fifty-nine complete sets of SIOP parameters were used from the field
campaign in the forward model simulations. For all simulations, the
sun zenith angle was set at 30° from nadir. Wind speed was fixed at
0 m s−1 and the water column was assumed to be optically deep and
ity and increased precision for measuringmulti-decadal time series of
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Table 1
Description of the inland water bodies assessed in this study (Na is the number of Landsat observations acquired by any sensor over that waterbody between 1987 and 2014).

Site
name

Reservoir name Description Storage capacity
(ML × 106)

Water-shed
area (km2)

Mean precip.
(mm/yr)

Na N L5 & L7
pairs

N L7 & L8
pairs

BC Ben Chiffley Cool temperate. Drinking water impoundment, recreation. 0.03 960 607 301 – –
BF Burdekin Falls Dry tropics, portion of watershed in wet tropics. Irrigation, urban

supply.
1.86 114,240 600 305 – –

BG Burley Griffin Cool temperate. Urban ornamental dammed river. 0.03 184 633 466 23 9
BL Blowering Cool temperate/alpine. Hydro-power, irrigation and recreation. 1.63 1606 1700 451 – –
CA Cargelligo Semi-arid. Diversion weir/inflow wetland. 0.004 86,554 400 543 37 11
CH Chaffey Warm temperate/sub-tropical. Minor dam for flood

mitigation, irrigation and water supply.
0.06 420 673 301 – –

CO Copeton Hot dry temperate. Hydro-power, irrigation and water supply. 1.36 5360 763 371 – –
FA Fairbairn Dry tropics. Irrigation, coal washing and groundwater recharge. 1.3 16,317 600 261 – –
HU Hume Warm temperate. Hydro-power, irrigation, river regulation and

recreation.
3.04 15,540 700 518 – –

KE Keepit Hot dry temperate. Flood mitigation, hydro-power, and irrigation. 0.43 5700 673 375 – –
LI Liddell Humid sub-tropical. Artificial lake for power station cooling water. 0.15 74 654 494 46 8
MA Malpas Cool temperate. Water supply impoundment, recreation. 0.01 197 931 470 25 15
PE Pejar Cool dry temperate. Urban water supply, recreation 0.009 143 666 177 – –
PI Pindari Hot temperate. Impoundment for hydro-power, flood mitigation,

and irrigation.
0.31 1994 740 362 – –

SR Split Rock Hot dry temperate. Impoundment for flood mitigation and irrigation. 0.4 1650 633 321 – –
WA Wallace Cool temperate. 0.004 100 859 277 – –
WI Windamere Warm temperate/humid subtropical. Hydro-power, irrigation and

water supply.
0.37 1070 675 475 – –

WV Wivenhoe Dam Humid subtropical. Flood control, hydro-power and urban supply. 2.6 7020 1000 338 – –
WW Walka Waterworks Warm temperate. Former water pumping station currently used as

urban recreation.
– 21,637 504.5 160 – –
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homogeneous. Inelastic scattering was excluded. The simulated reflec-
tance spectra were then convolved to represent the spectral resolution
of Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI. This was achieved
by applying the specific spectral response curves for each band for each
sensor.

To ensure the accuracy of the simulated data,we compared in situ re-
flectance measurements made concurrently with the SIOP measure-
ments with the Ecolight simulated spectra. Fig. 2 shows the measured
and simulated surface water reflectance for two of the sites, CA and
HU, as well as the bandwidths and positions of the Landsat sensors.
For the green band Landsat 7 ETM+ has a bandwidth of 0.52–0.60 μm
whereas Landsat 8 OLI has a bandwidth of 0.53–0.59 μm. For the red
Fig. 2.Measured in situwater surface reflectance (solid lines) and simulatedwater surface
reflectance (dashed lines). Two spectra are shown for Lake Hume, a dark, deep, clear
reservoir, and Lake Cargelligo, a bright, shallow, turbid reservoir. The placement and
bandwidth of the Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI green and red
spectral bands are indicated by the colored columns. The darker shaded column areas
are sampled by all sensors and the paler areas are sampled only by Landsat 5 TM and 7
ETM+. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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band Landsat 7 ETM+ has a bandwidth of 0.63–0.69 μm whereas
Landsat 8 OLI has a narrower bandwidth of 0.64–0.67. On a per lake
basis, the robustness of the optical closure between the simulated and
measured spectra varied slightly by site (data not presented). Differ-
ences were likely due to the different hydro-limnological conditions of
the various waterbodies where the apparent optical properties (AOPs)
and IOPs were collected (Hestir, Brando, Campbell, et al., 2015) as well
as variations in other environmental conditions (e.g., variable atmo-
spheric conditions, wind) that resulted in sub-optimal surface reflec-
tance measurements.

To develop a relationship between TSM concentration and the TSM
index, ten simulated spectra were selected that had the closest correla-
tion with the concurrent in situ spectral measurements. The TSM con-
centrations associated with these spectra ranged between 1.04 and
49.67 mg/L. Fig. 3 shows the relationship between the TSM index and
TSM concentrations. Similar to Dekker et al. (2002), the analytical
relationship between the TSM index and TSM concentration was
Fig. 3. The empirical relationship between TSM (mg/L) and the TSM index based on
forward radiative transfer model simulations.

ity and increased precision for measuringmulti-decadal time series of
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approximated by a power function. Thus, for processing purposes, a
power function was fitted to the data to retrieve TSM concentration
from Landsat surface reflectance data. In this way a semi-analytical
modelling approach was used to establish an empirical relationship be-
tween in situ TSM and surface reflectance.

Differences in spectral response between the Landsat 5 TM and
Landsat 7 ETM+ sensors and the Landsat 8 OLI sensor, particularly in
the width and placement of the red band implies that Landsat 8 OLI
does not capture the red chlorophyll-a absorption feature centered at
676 nm in thewater column in the same way as earlier Landsat sensors
(Fig. 2). The result is that Landsat 8 OLI measures slightly higher red re-
flectance, compared to Landsats 5 TM and 7 ETM+. This difference is
manifest in slightly higher TSM index values when the simulated spec-
tra are convolved to Landsat 8 bands, compared to Landsat 7 bands
(Fig. 2), particularly in more turbid waters.

2.4. Systematic image pre-processing, standardisation and observation
filtering

2.4.1. Landsat pre-processing and atmospheric correction
The Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI data used in

this study were all pre-processed to a consistent geographic grid using
LPGS Version 11.6.0. All images were corrected for atmospheric and
BRDF effects using the method described in Li et al. (2010). The
corrected images were processed to a predefined consistent grid and
stored in the Australian Geoscience Data Cube (AGDC, Purss et al.,
2015) which enabled the rapid retrieval of a time series of measure-
ments froma specific location in eachwater body. The resultant time se-
ries provide a consistent set of surface reflectance measurements that
can be compared through time.

All images were analysed to generate a corresponding ‘pixel quality’
image using the pixel quality flags described in (Sixsmith et al., 2013)
which include cloud and cloud shadow flags generated fromAutomated
Cloud Cover Assessment (ACCA) algorithm (Irish et al., 2006) and
Fmask algorithm (Zhu & Woodcock, 2012). These pixel quality images
were used to flag measurements that were contaminated by cloud/
cloud shadow or band saturation. However both ACCA and Fmask
sometimes fail to detect thin cloud i.e. cirrus and the edges of cumulus
clouds. Surface reflectance measurements that contain undetected
cloud are likely to produce erroneous results for optical water quality
retrieval algorithms. A short wave infrared filtering approach was de-
veloped in this study to overcome this limitation.

2.4.2. Observation filtering using a SWIR threshold
The highly absorptive properties of water in the short wave infrared

part of the spectrum are well established (Hale & Querry, 1973). The
consistency of these properties means that they have been exploited
to support atmospheric correction (Wang & Shi, 2005), based on the as-
sumption that ocean pixels will provide a ‘black pixel’ within a MODIS
scene. Wang and Shi (2005) note that the highly absorptive properties
of water in the SWIR are independent of turbidity, unlike reflectance
in the near infrared which increases over highly turbid water
(Vanhellemont & Ruddick, 2014). Furthermore, water vapour in clouds
acts to scatter the SWIR portion of sunlight, whereas liquid water ab-
sorbs it. These physical properties of water are used in this study to pro-
vide an automated quality assessment for each surface reflectance
measurement. Clouds that were not detected by ACCA and Fmask
wereflagged by applying a very low (N1% surface reflectance) threshold
to the SWIR 2 band of each sensor. This ensures that onlymeasurements
that display the very low SWIR reflectance typically associated with liq-
uid water are included in the time series of measurements. In addition
to removing undetected cloud from the time series of measurements,
the SWIR threshold also screens the measurements for other artefacts
that reduces the suitability of an image for water quality assessment.
These artefacts include the effects of water-surface conditions, such as
wind- and wave-induced sun glint and the presence of algal mats and
Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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floating macrophytes (Hestir et al., 2008; Kutser, Vahtmäe, & Praks,
2009).
2.5. Comparison of multiple Landsat sensors

During periodswhen two Landsat satellites are both operational and
acquiring imagery the areas that fall in the overlap between adjacent
paths are observed twice as often. These areas are often observedwithin
24 h of each other by both sensors providing a unique opportunity to
compare measurements taken by different sensors over long periods
of time. Four of the lakes (BG, CA,MA, LI)within the study area fell with-
in the overlap between adjacent paths and covered a range of hydro-
limnological settings (Table 1).
2.5.1. Comparing Landsat 7 & Landsat 8 noise equivalent reflectance
difference

Because of the significant increase in signal to noise ratio between
Landsat 7 ETM+ and Landsat 8 OLI (Pahlevan et al., 2014) we assessed
the difference in environmental noise equivalent reflectance difference
(NEΔR) for two inland lakes. The two lakes typify the high TSM and low
TSM lakes encountered in the study area thereby capturing the range of
‘signal’ against which to compare the NEΔR. A lower NEΔR will lead to
more precise TSM retrievals which is expected to reduce uncertainty
in TSMretrievals acquired by Landsat 8OLI and upcominghigh SNR sen-
sors such as Sentinels 2 and 3 (Drusch et al., 2012). NEΔR is ameasure of
image noise that incorporates the signal to noise ratio of the instrument,
any remaining scene-specific influences from atmospheric variability,
the air-water interface and refractions of diffuse and direct sky and
sunlight (Sagar et al., 2014). We selected a subset of the Landsat 7
ETM+ and Landsat 8 OLI observations that had been acquired within
24 h to characterise NEΔR of the Landsat 7 ETM+ and Landsat 8 OLI
sensors.

NEΔR was calculated on all image pairs following a modification
of the methods described in Wettle, Brando, and Dekker (2004).
These methods were developed to estimate the NEΔR for images ac-
quired over coastal waters. The method uses a pixel growing tech-
nique; sampling over a deep water region that is as homogeneous
as possible to determine a bandwise standard deviation. For the pur-
poses of this investigation the application of the square kernel ap-
proach (Wettle et al., 2004) could not be applied due to the small
size of inland water bodies, the presence of scan line corrector
(SLC)-off gaps in the data, and heterogeneity introduced by spatial
variations in the water constituents. To overcome these constraints
homogenous regions in each water body were manually selected
and used to calculate NEΔR. The homogenous regions were selected
to exclude pixels close to the edge of lakes that might be affected by
adjacency and to exclude pixels that fall within SLC-off gaps. The
magnitude of the NEΔR estimates made using this homogenous re-
gion approach were then compared to those of the same sensor
which could be made using the expanding kernel method, to ensure
a representative NEΔR estimate had been achieved.
2.5.2. Comparison of TSM retrievals from different sensors
The TSM algorithm was applied to paired observations, acquired

within 24 h of each other over both clear and turbid water bodies, to
test the robustness of the methodology across all three sensors. We
compared the relative performance of the different sensors for TSM re-
trieval by calculating the error (root mean square and mean average),
bias, and non-parametric rank correlation coefficient between Landsat
5 TM and Landsat 7 ETM+ as well as Landsat 7 ETM+ and Landsat 8
OLI. Given the objective of the study is to develop a time series for retro-
spective analysis, we considered the older sensor to be the “true” value
for our error and bias calculations.
ity and increased precision for measuringmulti-decadal time series of
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2.6. In situ validation: pseudo-matchup data

Because TSM is only a recommendedwater quality reporting param-
eter, it is not routinely monitored across water bodies in Australia
(Dekker & Hestir, 2012). However, TSM were routinely monitored at
Lake Burley Griffin (BG) in the Australian Capital Territory (Table 1,
Fig. 1). The TSMmonitoring data were collected by the National Capital
Authority with support from other agencies. The monitoring program
routinely monitors lake water quality during the recreational season,
and makes measurements approximately monthly, usually excluding
June and July. Samples are collected in an integrated tube sample from
the top 5 m of the water column for range of physical, chemical, micro-
biological and biological analyses including measurements of TSM. The
analyses of all sampleswere undertaken byNational Association of Test-
ing Authorities (NATA) registered laboratories. TSM observations were
also collected at Blowering Reservoir (BL), Lake Hume (HU) and
Fairbairn Reservoir (FA) by CSIRO and the University of South East
Queensland (Table 1, Fig. 1). These samples were collected as part of
field campaigns to optically characterise these waterbodies (Hestir,
Brando, Bresciani, et al., in press; Hestir, Brando, Campbell, et al.,
2015). Surfacewaterwas collected for a range of physical properties, in-
cluding TSM. Samples were handled and analysed following the proto-
cols described by Clementson et al. (2001).

The datawere captured as part of an in situwater qualitymonitoring
program, andnot for the express purpose of validating EO retrievals, as a
consequence the field data were acquired within 24 h of but not simul-
taneous with satellite overpass. As a consequence there are no concur-
rent matchup observations acquired at exactly the same time between
Landsat overpasses and in situ TSM sampling. While there were no
exact matchup data points between Landsat overpasses and in situ
TSM sampling activities, we were able to identify pseudo-match up
Fig. 4. Surface reflectance spectra, collected from paired Landsat 7 ETM+ and Landsat 8 OLI im
representing a deep, clear waterbody, and Lake Cargelligo (CA) (21 & 22/07/2013), represen
estimates, derived from a homogenous region in each water body and expressed in reflectance
legend, the reader is referred to the web version of this article.)
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observations that were made within one day of Landsat overpass. We
used the TSM data collected at sampling dates as independent in situ
data for the TSM retrieval evaluation. We calculated the root mean
square error (RMSE), mean absolute error (MAE), and percent bias for
the one-day pseudo matchups.

3. Results

3.1. Noise equivalent reflectance difference

To evaluate the impact of the improved radiometric resolution on
the water parameter retrievals the NEΔR values were calculated for
near coincident measurements of Landsat 7 ETM+ and Landsat 8 OLI
over both a deep clear water (MA) and a high suspended sediment
water body (CA) (Fig. 4). Noting that although the reflectance values
for each band are not continuous variables, the reflectance values for
each band are connected with lines in Fig. 4 to show the shape of the
spectra and to illustrate the impact that bit quantisation has on spectral
shape.

The spectral heterogeneity of surface reflectance values is much
greater for Landsat 7 ETM+ than for Landsat 8 OLI, and the turbid
lake has greater heterogeneity than the clear lake. The NEΔR for Landsat
7 ETM+ is substantially higher than for Landsat 8 OLI, therewas a near-
ly 25% decrease in NEΔR from Landsat 7 ETM+ to Landsat 8 OLI. The
NEΔR values shown in Fig. 4 show that the improved radiometric reso-
lution of Landsat 8 OLI has reduced the amount of noise in the Landsat 8
OLI data. The surface reflectance values also show the impact that bit
quantization has on the Landsat 7 ETM+ data. The range of values
observed for the areas of interest (n = 70 pixels) in all spectral bands
is far higher for Landsat 7 ETM+ than for Landsat 8 OLI for both water
bodies. These results indicate that Landsat 8 OLI data provide more
ages, acquired within 24 h of each other over Malpas Reservoir (MA) (08 & 09/02/2014),
ting a water body with a high suspended sediment load. Red lines represent the NEΔR
units on the secondary Y axis. (For interpretation of the references to color in this figure
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Table 2
Statistical relationship between the retrieved TSM values from paired Landsat observations acquired within 24 h.

Number of pairs Kendall's τ Kendall's p-value RMSE MAE Percent bias

Landsat 5 versus 7 138 0.67 b0.00 7.87 5.46 6.4
Landsat 7 versus 8 46 0.82 b0.00 7.90 4.47 1.4
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consistent surface reflectance measurements which are expected to
lead to more precise water parameter retrievals.
3.2. Correlation in TSM retrievals within 24 h

The correlations shown in Table 2 and in Fig. 5 show that the obser-
vations acquired by multiple sensors within the Landsat series of sen-
sors can be used to generate comparable TSM retrievals. The relative
retrieval between different sensors was not significantly different
(Table 2). We found that the TSM retrievals from the different sensors
are highly comparable, there was very little difference in between
Landsat 5–7 and Landsat 7–8 pairs. Notably, the scatter around the 1:1
line is random rather than significantly biased in either direction.
Landsat 5–7 pairs had a 6.4% bias, with Landsat 5 TM overestimating
TSM relative to Landsat 7 ETM+. Landsat 7–8 pairs had only a 1.5%
bias (Table 2), with Landsat 7 ETM+ overestimating TSM relative to
Landsat 8 OLI. This indicates that the scatter is likely due to changes in
Fig. 5. The correlation between retrieved TSM values from the three Landsat sensors
(Landsat 5 TM and Landsat 7 ETM+ (top) and Landsat 7 ETM+ and Landsat 8 OLI
(bottom)) for observations that were acquired within 24 h of each other.
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TSM at the sample location, rather than due to a systematic difference
in either of the sensor pairs.

3.3. Retrieved and in situ TSM data for Lake Burley Griffin, Lake Hume,
Blowering Reservoir and Fairbairn Dam

Fig. 6 shows a comparison of the in situ measurements of TSM for
Blowering Dam (BL), Fairbairn Dam (FB), Hume Dam (HU), and Lake
Burley Griffin (BG) and the TSM values retrieved from Landsat surface
reflectance measurements from the field sampling locations acquired
within 24 h of the in situ data collection. There is a strong correlation be-
tween in situ and satellite-retrieved TSMacquiredwithin 24h of one an-
other (Pearson's correlation coefficient (r) value=0.99)when all water
bodies with available matchup data are considered). While there is a
strong correlation, the retrievals for low TSM lakes such as BL show con-
siderable scatter and there is a systematic overestimation in satellite-
retrieved values (Fig. 6). A linearmodel fit between in situ and retrieved
TSM yielded a slope of 0.60 (N = 55, standard error = 0.014, p b 0.01,
R2 = 0.97).

The systematic overestimation is most likely due to the fact that the
atmospheric correction routine (Li et al., 2010) applied to the Landsat
data within the Australian Geoscience Data Cubewas developed for ter-
restrial rather than aquatic applications. An atmospheric correction rou-
tine (Vanhellemont & Ruddick, 2014) that is tailored for aquatic
application was applied to a test set of images to evaluate whether
this would improve retrieval accuracy. The surface reflectance values
generated from the Vanhellemont and Ruddick (2014) atmospheric
correction algorithm were lower than those generated by Li et al.
(2010) which would reduce the overestimation bias. However in
some cases the surface reflectance values generated by the
Vanhellemont and Ruddick (2014) correction were negative
(reflectance b 0) indicating that the code cannot be applied to a con-
tinental multi-decadal archive on an automated basis without fur-
ther modification. It is beyond the scope of this paper to ensure
that the Vanhellemont and Ruddick (2014) atmospheric correction
routine is applicable to entire contents of the Australian Landsat
archive. An atmospheric correction routine optimised for aquatic re-
trievals that is applicable to this archive could be developed in the
future, and this would potentially lead to a reduction in the over es-
timation bias seen in the current results.
Fig. 6. A comparison of in situ TSMmeasurements and TSM values retrieved from Landsat
surface reflectance.
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With the exception of Lake Burley Griffin, which has had inten-
sive long term TSM monitoring, there are not enough matchup data
to evaluate the performance of the algorithm on a lake-by-lake
basis. However, as is evident from Fig. 6, there is variability in how
well this generalized algorithm will work across different lakes.
With a mean average error of ~14 mg/L, we can assume that TSM re-
trievals using the generalized algorithm in highly turbid lakes or
wide ranging turbidity (e.g. HU, BG, and FB) will be representative
of the conditions with a likely overestimate. However, the retrievals
in very clear lakes are likely to be unreliable. The lower NEΔR of
Landsat 8 will likely improve the reliability of retrieval for very
clear lakes however there were insufficient (n=1) Landsat 8 surface
reflectance measurements acquired within 24 h of in situ data collec-
tion to evaluate whether the lower NEΔR of Landsat 8 leads to im-
proved retrieval precision or accuracy. This would need to be
assessed in a future study once sufficient coincident or near-
coincident in situ data has been collected.
Fig. 7. Themean TSM concentration (values) and coefficient of variation (color) for the period
the landscape context. (For interpretation of the references to color in this figure legend, the r
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3.4. Regional TSM dynamics

Fig. 7 shows the mean and coefficient of variation in retrieved TSM
values for the period 1987 to 2014 for each lake in this study. Fig. 7
shows that reservoirs in the more elevated parts of the Great Dividing
Range have predominantly lower TSM, and in some cases high c.v.,
whereas those lower in the landscape have higher TSM and moderate
to low c.v.

The TSM time series for these two lakes are shown in Fig. 8.
Fig. 8 also shows the observation frequency differences associated

with having one or two Landsat satellites acquiring data. The observa-
tion frequency during periods when two satellites are in operation is
much higher, with clear observations of the Earth's surface occurring
once every 10 days on average during periods of dual satellite operation
compared to every 21 days during periods of single satellite operation.
Please note that this ‘surface’ observation frequency excludes cloud af-
fected observations and therefore differs from the 8/16 day return
1987 to 2014 of the lakes within the study area. A shaded digital elevation model provides
eader is referred to the web version of this article.)
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Fig. 8.A shows the TSM time series for Lake Cargelligo (CA), a lakewith thehighmean TSM (74mg l−1). B shows the TSM time series for LakeWallace (WA), the lakewith the lowestmean
TSM (6 mg l−1) in the study area. The black line represents the running mean of four values.
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period of the satellite. The higher observation frequency provided by
two satellites operating at the same time provides water resourceman-
agers with more timely information about lake-wide TSM dynamics.

The data in Fig. 8 are placed in the context of a climatic record
(Beard, Chandler, Watkins, & Jones, 2011; Dijk et al., 2013), showing
three distinct periods of TSMdynamics including periods of higher rain-
fall in the late 1980s through to 2000, this was followed by an extended
period of low rainfall known as the Millennium drought (Dijk et al.,
2013) which was in turn followed by two large flood events in 2010
and 2011 (Beard et al., 2011). Lake Cargelligo is a shallow diversion
weir located in a semi-arid climate in the lower catchment, whereas
Lake Wallace is an irrigation reservoir located in the upper catchment
in a cool temperate climate. The lower catchment shallow lake shows
persistently high (N50 mg/L) TSM with strong annual fluctuations in
TSM levels with a distinct drop in 2010/11 whereas the upper catch-
ment reservoir shows consistently low (b20mg/L) TSMvalues through-
out the time series with the exception of a few higher (N40 mg/L)TSM
events during the 1990s.

4. Discussion

Although the radiometric resolution of earlier Landsat sensors has
been limiting for retrieval of optical water quality parameters such as
colored dissolved organic matter (Kutser, 2012), there was a significant
change in sensor design between Landsat 7 ETM+ and Landsat 8 OLI
(Morfitt et al., 2015)which ismeaningful in the context of water quality
applications (Pahlevan et al., 2014). The changes include a change in the
relative spectral response of the sensor, and amarked increase in the ra-
diometric resolution. The narrower red and green bands on Landsat 8
OLI alters the measurement of apparent optical properties as shown in
Fig. 2 necessitating the development of sensor specific models of opti-
cally active constituents (in this case TSM) retrieval (Fig. 3). The
increase in radiometric resolution is an important advance from an op-
tical water quality retrieval point of view, given the sensitivity of some
optical water quality retrieval techniques to system-wide noise
(Wettle et al., 2004), and Fig. 4 shows how the improved radiometric
resolutionmarkedly improves the signal to noise equivalent reflectance
difference (NEΔR) ratio. The improved signal to noise characteristics of
Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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Landsat 8will lead tomore precise TSM retrievals, but there is currently
insufficient in situ data-to-imagery match ups to evaluate the accuracy
of the Landsat 8 retrievals.

Fig. 5 shows that, once differences in relative spectral response have
been taken into account, retrieved TSM values that have been observed
within 24 h of each other show a high degree of correlation between
sensor pairs (Landsat 5 TM and Landsat 7 ETM+, Landsat 7 ETM+
and Landsat 8 OLI). This indicates that Landsat 8 will continue to add
and build on themulti-decadal record of Landsat observations of inland
water quality. Furthermore, the NEΔR analysis on paired Landsat obser-
vations show the improvement in signal to noise characteristics of
the Landsat 8 OLI sensor. This is consistent with recent studies for
long term monitoring in coastal waters (Pahlevan et al., 2014;
Vanhellemont & Ruddick, 2014).

The results from our study show that it is possible to construct a
multi-sensor time series of TSM retrievals that can be used to track
the relative changes in TSM within a water body with consistent errors
across time and across sensors. The TSM time series do provide valuable
insight into themulti-decadal dynamics of TSM concentration over time
within waterbodies (Fig. 8).

The bio-optical modelling approach provided a basis for construct-
ing a multi-sensor regionally-parameterized TSM retrieval algorithm
that can be applied to a region that has scarce in situ measurements
that would be required for the parameterization of a either a semi-
empirical or fully physics based retrieval (Malthus et al., 2012). The
lack of in situ data is not a challenge unique to Australia. Many parts of
the world, in particular remote areas and developing countries, lack
the basic infrastructure and resources to consistently monitor inland
water quality. Regional parameterizations of retrievals based on bio-
optical modelling provide a physically based approach that can be
applied for first-order TSM measurement and monitoring purposes.

A comparison of the independent in situ data and retrieved TSM
values acquired within 24 h of each other (Fig. 6) shows a strong corre-
lation (R2 = 0.97). This is an improvement on the results reported in
Olmanson et al. (2008) which reported an R2 of 0.78 correlation be-
tween surface reflectance and another measure of water clarity (Secchi
disk depth) for their calibration data. However Fig. 6 also shows that the
retrievals are overestimating the TSMconcentrations, and are unreliable
ity and increased precision for measuringmulti-decadal time series of
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at very low TSM concentrations. Based on this, caution should be ap-
plied when comparing the absolute value of TSM retrievals between
waterbodies. Users may choose to apply an empirical correction coeffi-
cient to account for the over estimation bias. The retrieved TSM values
for very clear waterbodies are likely to be noisy, particularly for values
retrieved from Landsat 5 TM and Landsat 7 ETM+ data. Retrievals
from Landsat 8 OLI are less noisy due to the lower NEΔR. The accuracy
of retrievals may also be improved in the future through the use of
water body specific IOPs where available.

The approach presented in this paper would provide input into an
analytical framework that places observed TSM dynamics into the
context of the various drivers that determinewater body TSMdynamics
including:

• intra-year variations in stream flows/sediment flux (seasonal rainfall/
stream flow patterns)

• inter-year variations in stream flows/sediment flux (climate variabil-
ity, changing patterns of rainfall timing/intensity, cycles of drought
and flood)

• landscape setting (upland vs lowland)
• changes in land use/catchment management
• land use intensification
• improvements in catchment management including reduced grazing
pressure and water sensitive urban design.

Such a system would provide a basis for interpreting and
distinguishing between the different causal factors that create the
changes in TSM observed across New South Wales and Queensland
(Fig. 7).

The approach developed in this paper could be applied to low tomid
latitude areas. However, caution should be used in applying this ap-
proach at higher latitudes where lower solar angles reduce the signal
levels, especially for Landsat 5 TM and Landsat 7 ETM+ data. The vari-
able depth of the global Landsat archive (Kovalskyy & Roy, 2013) will
determine the maximum possible length of the baseline characterisa-
tion of TSM for each lake. However the on-board storage, downlink
and central storage capabilities of Landsat 8 OLI and associated ground
segment enables the global availability of high SNR data (Roy et al.,
2014) which will enable the capacity to characterise the TSM dynamics
of water bodies worldwide.

5. Conclusions

This paper demonstrates that Landsat 8 OLI provides continuity of
surface reflectance measurement enabling the long term characterisa-
tion of TSM dynamics for lakes that represent a wide range of hydro-
limnological conditions. The changes in Landsat 8 OLI sensor design ne-
cessitate the development of sensor specific TSM retrieval algorithms to
account for the differences in relative spectral response between
Landsat 7 ETM+ and Landsat 8 OLI. However the improved SNR of
Landsat 8 OLI improves the precision of TSM retrievals. Lakes that sit
in the overlap between adjacent passes were observed by two Landsat
sensors within 24 h during periods when two sensors are operating.
The retrieved TSM values for these paired observations show that re-
trieved values are consistent across sensors, providing the basis for
multi-sensor time series of TSM observations. Multi-sensor time series
were calculated for a number of lakes in New SouthWales and Queens-
land, Australia, using an empirical relationship developed using semi-
analytical techniques developed using IOPs from lakes across the
study area. The multi-decadal dynamics of TSM was captured for these
lakes based on the mean and coefficient of variation in TSM for each
lake. The TSM time series for high and low mean TSM values showed
annual to decadal scale variability in TSM levels. The retrieved TSM
values correlate strongly with the in situ TSM measurements acquired
within 24 h of satellite overpass (Pearson's correlation coefficient
Please cite this article as: Lymburner, L., et al., Landsat 8: Providing continu
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(r) value = 0.99), but the retrieved TSM values were over-estimating
TSM in comparison with in situ data. The offset between the in situ
and retrieved TSM values indicates that an atmospheric correction rou-
tine designed for aquatic applications that can be applied at continental
scales on an automated basis needs to be developed and that specific
water body IOPs may be needed to increase the accuracy of retrievals
in some instances. Furthermore the capacity to develop sensor specific
retrieval models is crucial in the context of upcoming Sentinel 2 and
Sentinel 3 missions that will augment the capacity of the Landsat series
of sensors to characterise global lake water quality dynamics into the
future.
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